
[Bist, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3484-3485]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Quines: A Survey
Ankur Singh Bist

Govind Ballabh Pant University of Agriculture and Technology, India
ankur1990bist@gmail.com

Abstract
 In this paper a survey study is made on various issues of Quines and their impact on malicious activities.
Different scenarios are discussed to make analysis of concerned problem. Various approaches are also discussed to
focus on problems that have been found in this domain.

Keywords: Computer viruses, Quines.

Introduction
Now days the use of internet has become a

common activity. It caused the increment in the activities
produced by computer viruses. The damaging activities
caused by malicious codes are increasing day by day
causing harm to society. There are various schemes that
are designed to defend against computer viruses.

A quine is a computer program which takes no
input and produces a copy of its own source code as its
only output. The standard terms for these programs in the
computability theory and computer science literature are
self-replicating programs, self-reproducing programs,
and self-copying programs [1].

Quines

A quine is a fixed point of an execution
environment, when the execution environment is viewed
as a function [1]. Quines are possible in any
programming language that has the ability to output any
computable string, as a direct consequence of Kleene's
recursion theorem. For amusement, programmers
sometimes attempt to develop the shortest possible quine
in any given programming language [1].
The following Java code demonstrates the basic structure
of Quine [1].
public class Quine
{
 public static void main(String[] args)
 {
 char q = 34; // Quotation mark character
 String[] l = { // Array of source code
 "public class Quine",
 "{",
 " public static void main(String[] args)",
 " {",
 " char q = 34; // Quotation mark character",
 " String[] l = { // Array of source code",
 " ",

 " };",
 " for(int i = 0; i < 6; i++) // Print opening
code",
 " System.out.println(l[i]);",
 " for(int i = 0; i < l.length; i++) // Print string
array",
 " System.out.println(l[6] + q + l[i] + q + ',');",
 " for(int i = 7; i < l.length; i++) // Print this code",
 " System.out.println(l[i]);",
 " }",
 "}",
 };
 for(int i = 0; i < 6; i++) // Print opening code
 System.out.println(l[i]);
 for(int i = 0; i < l.length; i++) // Print string array
 System.out.println(l[6] + q + l[i] + q + ',');
 for(int i = 7; i < l.length; i++) // Print this code
 System.out.println(l[i]);
 }

The source code contains a string array of itself,
which is output twice, once inside
quotation marks.

Self-organization and replication
While features of self-organization and self-

replication are often assumed the hallmark of living
systems, there are many instances of abiotic molecules
exhibiting similar characteristics under proper
conditions. For example Martin and Russel show that
physical compartmentation by cell membranes from the
environment and self-organization of self-
contained reduction oxidation so called reduction
 reactions are the most conserved attributes of living
things, and they argue therefore that inorganic matter
with such attributes would be life's most likely last
common ancestor [2] .

[Bist, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3484-3485]

Virus self-assembly within host cells has implications for
the study of the origin of life, as it lends further credence
to the hypothesis that life might have started as self-
assembling organic molecules [2].

Multi-quines ---Introns

We initialize by saying what a bi-quine (or more
generally a multi-quine) is. To start, here is what it is not:
a bi-quine is not a program which prints a second
program, which in response prints the first again
(actually, it is that, but things are a bit more subtle) [2].
This is too simple to do (we have proved the existence of
such using the fixed-point theorem --- one program is
almost a quine, and the other is only a sequence of calls
to print the code of the other one [2,3] .
A multi-quine is also not a polyglot quine (a quine that
can be read, and is a quine, in several different
languages) [2,3] . True, polyglot quines in real are multi-
quines if you imagine well about it (the converse is not
true), but polyglot quines don't exist for every proper
combination of programming languages (although it is
true that some people have been incredibly smart at
constructing them) whereas multi-quines do — polyglot
quines are a hack whereas multi-quines are a general
phenomenon [3].

A bi-quine is a very interesting kind of program:
when run normally, it is a quine. But if it called with a
particular command line argument, it will print a
program that will look different, its “brother”. Its brother
is also a quine, but in a different programming language,
so its brother prints its self listing when run normally.
But when run with a specific command line argument,
the brother prints the listing of the original program [3]
[4].
UPDATE ContainerContents SET
OldContents='%contents%' WHERE TagID='%id%'
Query 1 - Updating known contents[4]

%content%' WHERE TagId='%id%';

SET @a='UPDATE ContainerContents SET
NewContents=concat(\'%content%\\\' WHERE
TagId=\\\'%id%\\\'; SET @a=\', QUOTE(@a), \'; \', @a);
%payload%; --';

UPDATE ContainerContents SET
NewContents=concat('%content%\' WHERE
TagId=\'%id%\'; SET @a=', QUOTE(@a), '; ', @a);
%payload%; --
Exploit 1 - SQL virus using quines for MySQL.
Whitespace is for readability only [4].

The architecture and organization of quines or multi-
quines give rise to malicious activities. It is required to
develop methods to search our pattern for these entities
to avoid them in malicious activities. Pattern matching
approaches and code emulation can be used to detect
these types of problems.

Conclusion

In this paper we reviewed various approaches
and methods to explain various issues of Quines. The
purpose of this analysis is to evolve the solution set for
the particular problem of viruses caused by quines and
try to evolve some more efficient approaches for
concerned problem. We organised the information that
will make vision clear to all those working in this area.

 References

[1] www.wikipedia.com.
[2] http://en.wikipedia.org/wiki/Abiogenesis
[3] http://www.madore.org/~david/computers/quin.

html
[4] http://www.rfidvirus.org/exploits/sql_quine/inde

x.html

